## Synthetic Aperture Radar Imager

### Team 18

MEMBERS:

LUKE BALDWIN

JOSH DENNIS

KAYLEN NOLLIE

DESMOND PRESSEY

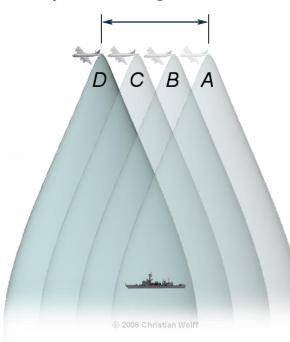
SPONSOR: NORTHROP GRUMMAN

CONTACT: MIKE BLUE

ADVISOR: DR. DORR CAMPBELL

INSTRUCTOR: DR. NIKHIL GUPTA

DATE: 10/22/2015


### Outline

- Introduction to SAR
- Last Year: Overview
- Project Description
- Design Concepts
- Design Evaluation
- Risks and Challenges
- Schedule and Future Plans



imagine phased array

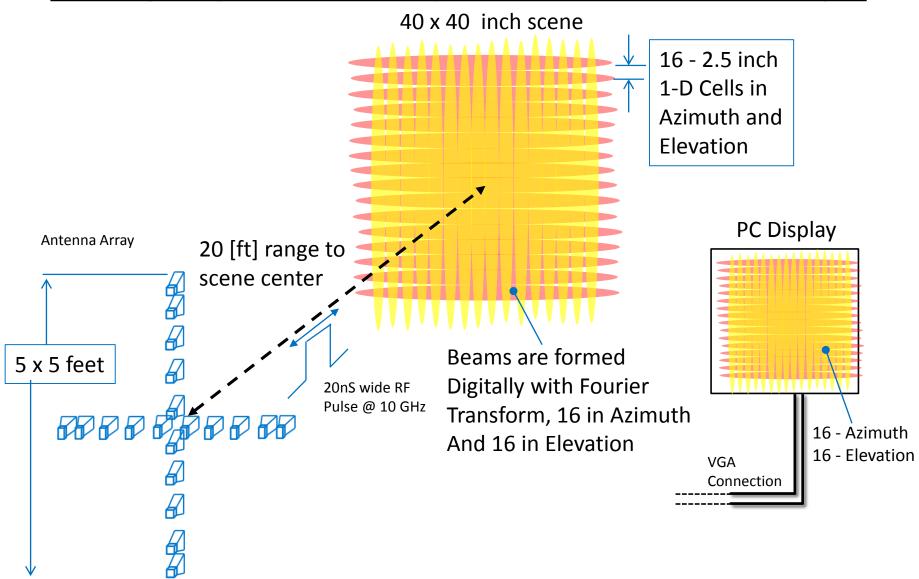

#### synthetic length of SAR





[1]

### High-Resolution SAR Image



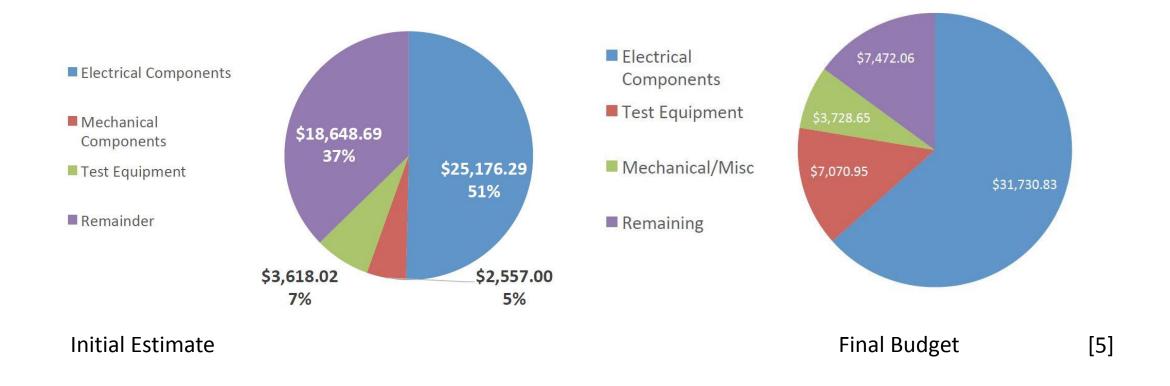

### **Project Proposal**

- Create a Synthetic Aperture Radar
  - Weapons detection for homeland security
  - Stationary
  - Low resolution
  - Concealable
  - Low Cost
  - Relatively mobile



### Imaging Radar Operational Concept




[4]

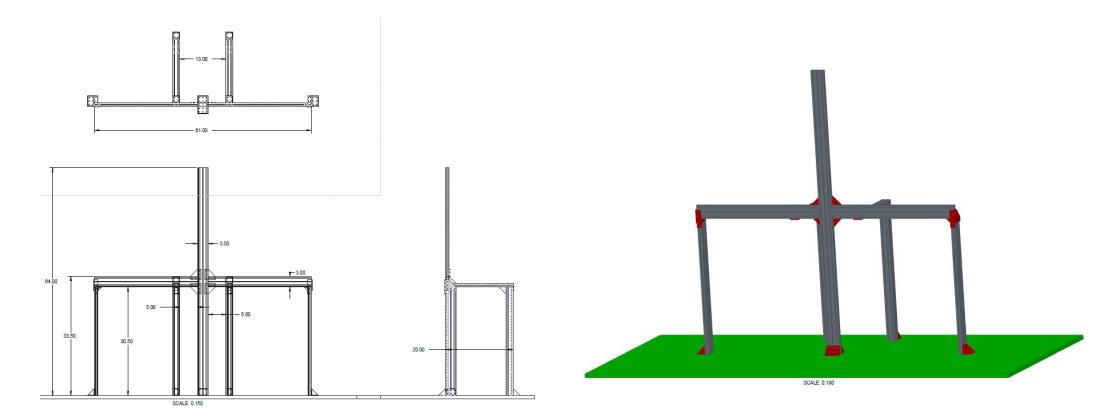
### First Generation: Overview

- Able to produce limited results
- Electrical components and equipment rental consumed most of the budget
- Fabrication issues
  - 3 week delay
  - Poor craftsmanship
  - Additional modifications needed
- Needs Improvement:
  - Stability
  - Weight
  - Horn adjustment

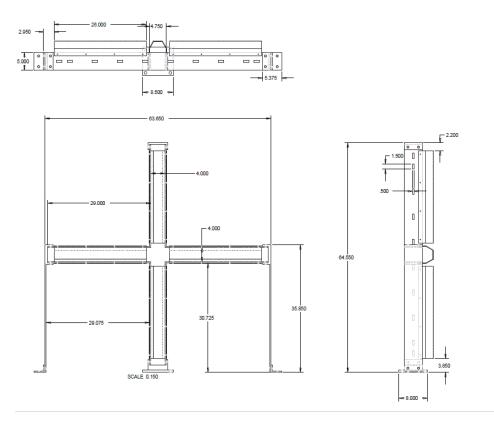


### First Generation: Budget




### Second Generation: Focus

- Mobility
  - Attach wheels
- Weight
  - < 80 lbs
- Horn Adjustment
  - Aligned within 1ft circle at 20ft away
- Stability
  - Movement causes artificial phase shift
  - Max movement: 1/72 inch
- Cost
  - Minimize


### **Concept Generation**

- Project was divided into multiple parts:
  - Structure
  - Horn holders
  - Base
  - Hardware Box (EE Team)

### Design Concepts – Structure Design A (80-20)



### Design Concepts – Structure Design B (Fabricated Al)





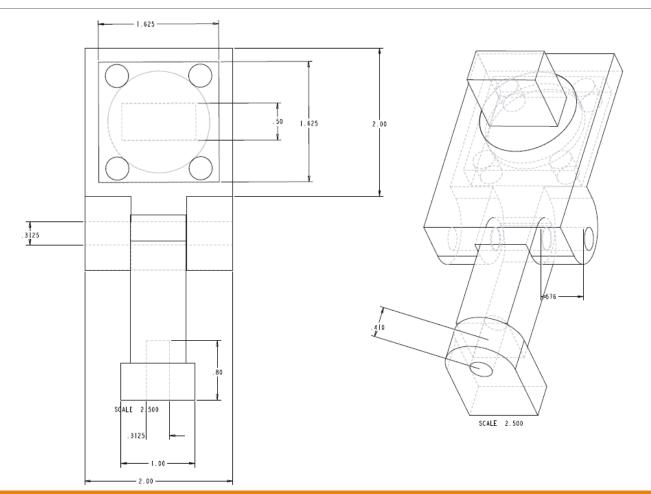
## Concepts Evaluation – Structure Pros

DESIGN A (80-20)

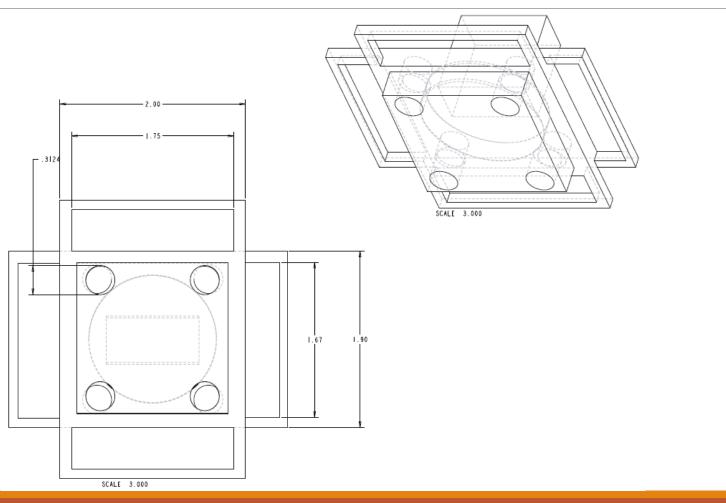
- Modularity makes it easy to assemble
- Provides limitless translational horn placement along the beam
- Simple to order and machine
- Lightweight compared to equivalent solid cross section

### DESIGN B (FABRICATED AL)

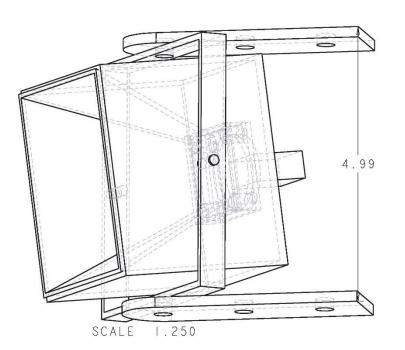
- Thicker cross section allows more sturdiness and deformation resistance
- Larger bolts and hardware can be used in assembly
- Larger surface area for ground contact

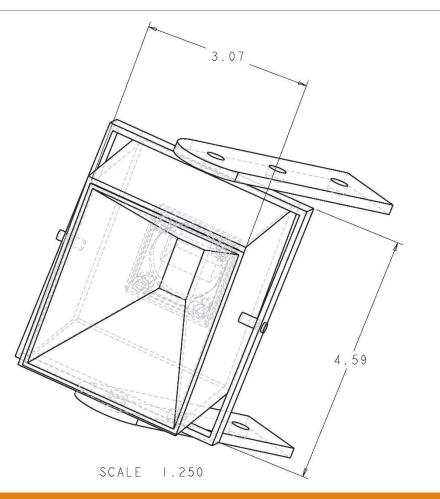

# Concepts Evaluation – Structure Cons

**DESIGN A (80-20)** 


- DESIGN B (FABRICATED AL)
- Fasteners might not carry weight or force well
- Offers little waveguide/horn protection to the elements
- Component box could deform support beams

- Additional time to manufacture and assemble
- More weight than 80-20
- Back mount of component box causes additional stress on arms
- More expensive


## Design Concepts – Horn Holder Design A (Articulating Arm)




## Design Concepts – Horn Holder Design B (Handle Tilt)



### Design Concepts – Horn Holder Design C (Covered Tilt)





### Concepts Evaluation – Horn Holder Pros

DESIGN A (ARTICULATING ARM)

 Simplest of designs

 Has proven concept (computer monitor model) DESIGN B (HANDLE TILT)

- Easy to adjust manually
- Rotation one point on the rear

DESIGN C (COVERED TILT)

- Cover allows for attachments (laser alignment)
- Rotation about the center
- Modeled in compatibility with 80/20 structures

### Concepts Evaluation – Horn Holder Cons

DESIGN A (ARTICULATING ARM)

- Pivots are not about the center or in line
- Favors mounting to the top of structure bar
- Horns on vertical column will be a challenge

DESIGN B (HANDLE TILT)

- The method of position locking is unclear
- Challenging to use handle bars and attach to structure

DESIGN C (COVERED TILT)

- Structure is quite complex
- Cover may affect antenna readings

### Continued Evaluation

- Continue sponsor and ECE team communication
  - Optimize structure and horn holder design
  - Adding new constraints upon feedback
- Cost vs Benefit analysis
- Submit final suggestion to sponsor
- Base platform concept generation
  - Dependent on final structure design



Aluminum Platform Truck: McMaster-Carr (\$450) [6]

### Prioritizing Engineering Characteristics

| Engineering Charateristics |                     |                      |               |                   |                    |                    |           |                     |                      |        |
|----------------------------|---------------------|----------------------|---------------|-------------------|--------------------|--------------------|-----------|---------------------|----------------------|--------|
| Customer Requirements      | Customer Importance | Structural Thickness | Material Used | Locking Mechanism | Axis Adjustability | Mounting Mechansim | Base size | Height Above Ground | Number of Crossbeams | Weight |
| Increased Stability        | 5                   | 9                    | 3             | 6                 |                    | 3                  | 9         | 6                   | 6                    |        |
| Lower Weight               | 5                   | 3                    | 9             |                   |                    |                    | 6         | 3                   | 6                    | 9      |
| Good Images                | 5                   |                      |               | 6                 | 9                  | 9                  |           | 3                   |                      |        |
| Better Horn Mounting       | 5                   |                      |               | 9                 | 9                  | 9                  |           |                     |                      |        |
| Cost                       | 4                   | 3                    | 6             | 3                 |                    | 3                  | 3         |                     | 3                    |        |
| Hardware Box               | 2                   | 3                    | 6             |                   |                    |                    |           |                     |                      | 3      |
| Portability                | 2                   |                      | 6             |                   |                    |                    | 9         | 6                   |                      | 9      |
| Score                      |                     | 18                   | 30            | 24                | 18                 | 24                 | 27        | 18                  | 15                   | 21     |
| Relative Weight            |                     | 78                   | 108           | 117               | 90                 | 117                | 105       | 72                  | 72                   | 69     |
| Rank                       |                     | 6                    | 3             | 1                 | 5                  | 1                  | 4         | 7                   | 7                    | 9      |

### Most Important EC's:

- 1. Mounting Mechanism
- 1. Locking Mechanism
- 3. Material Used
- 4. Base Size
- 5. Axis Adjustability
- 6. Structural Thickness
- 7. Height Above Ground
- 7. Number of Crossbars
- 9. Weight

### Schedule

| D  | Task Name                           | Duration | Start        | Finish       | Aug 30, '11 Sep 13, '15 Sep 27, '15 Oct 11, '15 Oct 25, '15 Nov 8, '15 Nov 22, '11 Dec 6, '15 S T M F T S W S T M F T S W |
|----|-------------------------------------|----------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------|
| 1  | Planning                            | 27 days  | Thu 9/3/15   | Fri 10/9/15  |                                                                                                                           |
| 2  | Schedule Regular Meetings           | 7 days   | Thu 9/3/15   | Fri 9/11/15  |                                                                                                                           |
| 3  | Agree on Scope of Work with Sponsor | 17 days  | Thu 9/3/15   | Fri 9/25/15  |                                                                                                                           |
| 4  | Project Plans and Product Specs     | 11 days  | Fri 9/25/15  | Fri 10/9/15  |                                                                                                                           |
| 5  | Concept Creation                    | 16 days  | Mon 9/28/15  | Tue 10/20/15 |                                                                                                                           |
| 6  | Preliminary Ideas                   | 11 days  | Mon 9/28/15  | Mon 10/12/15 |                                                                                                                           |
| 7  | Refine/Eliminate Ideas              | 1 day    | Tue 10/13/15 | Tue 10/13/15 | i K                                                                                                                       |
| 8  | Detailed Designs                    | 4 days   | Wed 10/14/15 | Mon 10/19/15 | 1                                                                                                                         |
| 9  | Propose Concepts to Sponsor         | 0 days   | Tue 10/20/15 | Tue 10/20/15 | 10/20                                                                                                                     |
| 10 | Design Selection                    | 21 days  | Tue 10/13/15 | Tue 11/10/15 |                                                                                                                           |
| 11 | CAD Modeling                        | 17 days  | Tue 10/13/15 | Wed 11/4/15  |                                                                                                                           |
| 12 | Failure Modes Effects Analysis      | 6 days   | Fri 10/23/15 | Fri 10/30/15 |                                                                                                                           |
| 13 | Finite Elements Analysis            | 10 days  | Mon 10/26/15 | Fri 11/6/15  |                                                                                                                           |
| 14 | Propose Final Design                | 0 days   | Tue 11/10/15 | Tue 11/10/15 | ♦ 11/10                                                                                                                   |
| 15 | Procurement                         | 8 days   | Wed 11/11/15 | Fri 11/20/15 |                                                                                                                           |
| 16 | Bill of Materials                   | 8 days   | Wed 11/11/15 | Fri 11/20/15 |                                                                                                                           |
| 17 | Purchase Orders                     | 5 days   | Wed 11/11/15 | Tue 11/17/15 |                                                                                                                           |
| 18 | Deliverables                        | 76 days  | Thu 9/3/15   | Thu 12/17/15 |                                                                                                                           |
| 19 | Code of Conduct                     | 7 days   | Thu 9/3/15   | Fri 9/11/15  |                                                                                                                           |
| 20 | Needs Assessment                    | 17 days  | Thu 9/3/15   | Fri 9/25/15  |                                                                                                                           |
| 21 | Project Plans and Product Specs     | 10 days  | Mon 9/28/15  | Fri 10/9/15  |                                                                                                                           |
| 22 | Initial Web Page Design             | 8 days   | Thu 10/8/15  | Mon 10/19/15 |                                                                                                                           |
| 23 | Midterm Presentation I              | 9 days   | Mon 10/12/15 | Thu 10/22/15 | ]   🎽 🎽                                                                                                                   |
| 24 | Midterm Report I                    | 15 days  | Mon 10/12/15 | Fri 10/30/15 | ] <b>``</b>                                                                                                               |
| 25 | Peer Evaluation                     | 0 days   | Tue 11/3/15  | Tue 11/3/15  | ♦ 11/3                                                                                                                    |
| 26 | Midterm Presentation II             | 12 days  | Mon 11/2/15  | Tue 11/17/15 | ]   • • • • • • • • • • • • • • • • • •                                                                                   |
| 27 | Peer Evaluation                     | 0 days   | Tue 11/24/15 | Tue 11/24/15 | ♦ 11/24                                                                                                                   |
| 28 | Final Web Page Design               | 12 days  | Mon 11/9/15  | Tue 11/24/15 |                                                                                                                           |
| 29 | Final Design Poster Presentation    | 10 days  | Wed 11/18/15 | Tue 12/1/15  | •                                                                                                                         |
| 30 | Final Report                        | 22 days  | Wed 11/18/15 | Thu 12/17/15 | 1   *                                                                                                                     |

### Future Plans

- Regular meetings with group, EE team, and sponsor
- Conduct Failure Modes Effects Analysis (FMEA) on designs
- Design selection
- Propose final design
- Make Bill of Materials
- Submit Purchase Order

### Summary

- Review of SAR
- Review of last year's final product
- Project objectives
- Generate design concepts
- Prioritize engineering characteristics
- Proposed course of action for determining final design
- Discussed future plans

### References

- 1. NASA AirSAR, https://upload.wikimedia.org/wikipedia/commons/a/a6/AirSAR-instrumenton-aircraft.jpg
- 2. Radar Tutorial, http://www.radartutorial.eu/20.airborne/pic/sar\_principle.print.png
- Cammuse, Matthew. "SAR Final Presentation." http://eng.fsu.edu/me/senior\_design/2015/team27/Webpage/presentations/Team%20E%2 311\_Milestone%20%237%20Presentation\_%20Final%20Report.pptx. Web 10/18/2015.
- 4. E11 Milestone Final Report, http://eng.fsu.edu/me/senior\_design/2015/team27/
- 5. http://www.northropgrumman.com/Photos/pgM\_BA-10002\_067.jpg
- 6. http://www.mcmaster.com/#carts/=zgsvoa